Activation Function structure. More...
#include <SimdNeural.hpp>
Public Types | |
enum | Type { Identity , Tanh , Sigmoid , Relu , LeakyRelu , Softmax } |
Detailed Description
Activation Function structure.
Provides activation functions and their derivatives.
Member Enumeration Documentation
◆ Type
enum Type |
Describes types of activation function. It is used in order to create a Layer in Network.
Enumerator | |
---|---|
Identity | Identity: f(x) = x; df(y) = 1; |
Tanh | Hyperbolic Tangent: f(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x)); df(y) = 1 - y*y; See implementation details: SimdSynetTanh32f and SimdNeuralDerivativeTanh. |
Sigmoid | Sigmoid: f(x) = 1/(1 + exp(-x)); df(y) = (1 - y)*y; See implementation details: SimdSynetSigmoid32f and SimdNeuralDerivativeSigmoid. |
Relu | ReLU (Rectified Linear Unit): f(x) = max(0, x); df(y) = y > 0 ? 1 : 0; See implementation details: SimdSynetRelu32f and SimdNeuralDerivativeRelu. |
LeakyRelu | Leaky ReLU(Rectified Linear Unit): f(x) = x > 0 ? x : 0.01*x; df(y) = y > 0 ? 1 : 0.01; See implementation details: SimdSynetRelu32f and SimdNeuralDerivativeRelu. |
Softmax | Softmax (normalized exponential function): f(x[i]) = exp(x[i])/sum(exp(x[i])); df(y) = y*(1 - y); |